Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states.
نویسندگان
چکیده
We previously showed that insulin has a profound effect to suppress pyruvate dehydrogenase kinase (PDK) 4 expression in rat skeletal muscle. In the present study, we examined whether insulin's effect on PDK4 expression is impaired in acute insulin-resistant states and, if so, whether this change is accompanied by decreased insulin's effects to stimulate Akt and forkhead box class O (FOXO) 1 phosphorylation. To induce insulin resistance, conscious overnight-fasted rats received a constant infusion of Intralipid or lactate for 5 h, while a control group received saline infusion. Following the initial infusions, each group received saline or insulin infusion (n = 6 or 7 each) for an additional 5 h, while saline, Intralipid, or lactate infusion was continued. Plasma glucose was clamped at basal levels during the insulin infusion. Compared with the control group, Intralipid and lactate infusions decreased glucose infusion rates required to clamp plasma glucose by approximately 60% (P < 0.01), confirming the induction of insulin resistance. Insulin's ability to suppress PDK4 mRNA level was impaired in skeletal muscle with Intralipid and lactate infusions, resulting in two- to threefold higher PDK4 mRNA levels with insulin (P < 0.05). Insulin stimulation of Akt and FOXO1 phosphorylation was also significantly decreased with Intralipid and lactate infusions. These data suggest that insulin's effect to suppress PDK4 gene expression in skeletal muscle is impaired in insulin-resistant states, and this may be due to impaired insulin signaling for stimulation of Akt and FOXO1 phosphorylation. Impaired insulin's effect to suppress PDK4 expression may explain the association between PDK4 overexpression and insulin resistance in skeletal muscle.
منابع مشابه
Insulin Suppresses PDK4 Expression in Skeletal Muscle Independent of Plasma FFA
Starvation and experimental diabetes induce a stable increase in pyruvate dehydrogenase kinase (PDK) activity in skeletal muscle, which is largely due to a selective upregulation of PDK4 expression. Increased free fatty acid (FFA) level has been suggested to be responsible for the upregulation. Since these metabolic states are also characterized by insulin deficiency, the present study was desi...
متن کاملAltered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise.
Skeletal muscle Na(+)-K(+)-ATPase plays a central role in the clearance of K(+) from the extracellular fluid, therefore maintaining blood [K(+)]. Na(+)-K(+)-ATPase activity in peripheral tissue is impaired in insulin resistant states. We determined effects of high-fat diet (HFD) and exercise training (ET) on skeletal muscle Na(+)-K(+)-ATPase subunit expression and insulin-stimulated translocati...
متن کاملبررسی نقش پیروات دهیدروژناز کیناز 4 (PDK4) بر بیان سیترات سنتاز در عضله اسکلتی متعاقب چهار هفته تمرین استقامتی در موشهای نر نژاد ویستار
Background and Objective: Maintaining a balance between energy demand and supply is critical for health. In this process, pyruvate dehydrogenase kinase 4 (PDK4) enzyme plays an important role to maintain energy homeostasis. So, the aim of the present study was to investigate the role of PDK4 on the expression of citrate synthase in the skeletal muscle after 4 weeks of endurance training in male...
متن کاملEffects of high-fat diet and physical activity on pyruvate dehydrogenase kinase-4 in mouse skeletal muscle
BACKGROUND The expression of PDK4 is elevated by diabetes, fasting and other conditions associated with the switch from the utilization of glucose to fatty acids as an energy source. It is previously shown that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a master regulator of energy metabolism, coactivates in cell lines pyruvate dehydrogenase kinase-4 (PDK4) gene expre...
متن کاملInvited review: Effects of acute exercise and exercise training on insulin resistance.
Insulin resistance of skeletal muscle glucose transport is a key defect in the development of impaired glucose tolerance and Type 2 diabetes. It is well established that both an acute bout of exercise and chronic endurance exercise training can have beneficial effects on insulin action in insulin-resistant states. This review summarizes the present state of knowledge regarding these effects in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 55 8 شماره
صفحات -
تاریخ انتشار 2006